Detailed Marking Instructions for each question

Question		Generic Scheme	Illustrative Scheme	Max Mark
1.	(a)	Ans: proof - ${ }^{1}$ Strategy: know how to calculate percentage difference in population - ${ }^{2}$ Process: calculate percentage growth Alternative Strategy: - ${ }^{1}$ Strategy: know to find 0.4% and add it on - ${ }^{2}$ Process: Calculate population in 2015 and round to the nearest hundred.	- ${ }^{1} \frac{21400}{5347600} \times 100=\ldots$ ${ }^{2} \quad 0.4$ - ${ }^{1}$ Finding $0 \cdot 4 \%$ of 5347600 and adding it on $\begin{array}{rl} \bullet 2 & 5347600 \div 100 \times 0.4+5347600 \\ & =5369000 \end{array}$	2

Notes:

Commonly Observed Responses:

1. $21400 / 5369000 \times 100=0.39=0.4$ award $1 / 2 \times \checkmark$

Question	Generic Scheme	Illustrative Scheme	Max Mark
(b)	Ans: 5433700 - ${ }^{1}$ Strategy: identify multiplier - ${ }^{2}$ Strategy: identify power - ${ }^{3}$ Process/ Communication: calculate population		3

Notes:

1. For an answer of 5433700 without working
award $3 / 3 \checkmark \checkmark \checkmark$
2. If candidate calculates 3 annual increase accept rounding to nearest hundred for each year. ie ((2016): 5390 500, (2017): 54121 00, (2018): 5433 700) award $3 / 3 \checkmark \checkmark \checkmark$
3. Accept $5437600 \times 1 \cdot 004^{4}=543370$ award $3 / 3 \checkmark \checkmark \checkmark$
4. If candidate does $5347600 \times 1 \cdot 004^{3}=5412000$ award 2/ $3 \checkmark \times \checkmark$
5. Where an incorrect percentage is used, the working must be followed through to give the possibility of awarding $2 / 3$
6. For an answer of 5390500 ($5369000 \times 1 \cdot 004$), no working necessary
7. For an answer of $16171400(5369000 \times 1.004 \times 3$), with working
8. For an answer of 5433400 ($5369000+21476 \times 3$), with working
9. For an answer of $64400(5369000 \times 0.004 \times 3)$
10. For an answer of $5433200(5369000+21400 \times 3)$
award $1 / 3 \checkmark x x$
award $1 / 3 \checkmark \times x$
award $1 / 3 \checkmark x x$
award 0/ $3 \times x \times$
award 0/ $3 \times x \times$

Commonly Observed Responses:

Question		Generic Scheme	Illustrative Scheme	Max Mark
2.		Ans: 01:30 (on Sunday $10^{\text {th }}$) - ${ }^{1}$ Strategy: knows how to deal with time zone and flight time - ${ }^{2}$ Process/ Communication: state time	- ${ }^{1}$ evidence of adding flight time and subtracting time difference - 2 01:30 (on Sunday $10^{\text {th }}$)	2

Notes:

For the following answers no working is necessary

1. For an arrival time of 17:30 (add flight time and adds time difference) award 1/2
2. For an arrival time of $08: 40$ (subtracts flight time then subtracting time difference) award 1/2
3. For an arrival time of 00:40 (subtracts flight time and adds time difference) award 1/2

Commonly Observed Responses:

Notes:

1. If no calculations are attempted all comments are invalid $0 / 3$
2. All comments must refer to percentages, fractions, proportion etc
3. If candidate assumes that there are the same number of people in each poll then ${ }^{1}$ is not available but ${ }^{2}$ can be awarded for Yes 442, No 469, Undecided 295.
In this case only, if they refer to the number of people \cdot^{3} can be awarded comparing the number of people in each category.
4. If only one category has been considered in both opinion polls, then all three marks are available.

Commonly Observed Responses:

Question			Generic Scheme	Illustrative Scheme	Max
4.	(a)	(i)	Ans: 1:100 000 - ${ }^{1}$ Communication: find the scale	${ }^{1} 1: 100000$	1
		(ii)	Ans: $\mathbf{0 7 4}{ }^{\circ}, \mathbf{9 . 6} \mathrm{km}$ - ${ }^{2}$ Communication: correct bearing - ${ }^{3}$ Communication: distance in kilometres	$\bullet^{2} 074^{\circ}$ $\cdot{ }^{3} 9.6 \mathrm{~km}$	2

Notes:

1. For $1 \mathrm{~cm}=1 \mathrm{~km}$ award $1 / 1$ treat the $=$ as bad form
2. Allow a tolerance of $+-1^{\circ}$ for angle
3. Allow a tolerance of +-0.1 km for length
4. For ${ }^{1}$ the leading 0 must be present in the bearing
5. Candidates must use the scale that they have found in part (a) for part (b)

Commonly Observed Responses:

1. For $1 \mathrm{~cm}: 1 \mathrm{~km}$ award $1 / 1$
2. For $9.8 \mathrm{~cm}: 9.8 \mathrm{~km}$ award $0 / 1 \times$

Question	Generic Scheme	Illustrative Scheme	
(b)	Ans: 23 (minutes) - ${ }^{1}$ Strategy: use correct speed - ${ }^{2}$ Process: find time in hours to 3 decimal places - ${ }^{3}$ Communication: find the time in minutes, and round Alternative strategy - ${ }^{1}$ Strategy: Compare time needed for $21 \mathrm{~km} / \mathrm{h}$ and 27 km/h - ${ }^{2}$ Process: find time in hours for both speeds to 3 decimal places - ${ }^{3}$ Communication: select shortest time, convert to minutes and round	- ${ }^{1}$ use $27 \mathrm{~km} / \mathrm{hr}$ - $^{2} 10 \cdot 2 \div 27=0 \cdot 377 \ldots$ (hours) $\bullet^{3} 0 \cdot 377 \ldots \times 60=22 \cdot 66 \ldots \rightarrow 23$ - ${ }^{1}$ use $27 \mathrm{~km} / \mathrm{hr}$ and $21 \mathrm{~km} / \mathrm{hr}$ $\bullet^{2} 10 \cdot 2 \div 27=0 \cdot 377 \ldots$ (hours) and $10 \cdot 2 \div 21=0 \cdot 845 \ldots$ (hours) - ${ }^{3} 0 \cdot 377 \ldots \times 60=22 \cdot 66 \ldots \rightarrow 23$	3

Notes:

1. If candidate only uses 21 or $24 \mathrm{~km} / \mathrm{hr} \bullet^{2}$ and \bullet^{3} are available.
2. For \bullet^{2} time in hours must be to at least 3 decimal places rounded or truncated.
3. In the alternative strategy, only the shortest time needs to be converted to minutes.

Commonly Observed Responses:

Question			Generic Scheme	Illustrative Scheme	Max
5.	(a)	(i)	Ans: (\$)183 - ${ }^{1}$ Strategy: identify the costs not included - ${ }^{2}$ Process: calculate the cost for card 1	${ }^{11}$ \$32 and \$37 $\bullet^{2} \$ 114+32+37=\$ 183$	2
		(ii)	Ans: $\$ 157$ supported by working - ${ }^{3}$ Strategy: identify the "missing" attraction and the two cheapest attractions - ${ }^{4}$ Process: calculate the cost for card 2 - ${ }^{5}$ Process: state cost of card 3 - ${ }^{6}$ Communication: state the cheapest price	- ${ }^{3} \$ 24, \$ 32$ and $\$ 30$ $\bullet^{4} \$ 71+\$ 24+\$ 32+\$ 30=\$ 157$ - ${ }^{5} \$ 180$ - ${ }^{6}$ (\$) 157	4

Notes:

1. If candidate chooses to buy two of card 2 and buys a one world observatory separately $=\$ 174$ do not award \bullet^{3}, \bullet^{4} is still available.
2. ${ }^{4}$ is available for adding at least 2 out of the 3 missing attractions to card 2 price.

Commonly Observed Responses:

Questio	Generic Scheme	Illustrative Scheme	Max
(b)	Ans: $£ 1$ gives $\$ 1 \cdot 555$ or $\$ 1$ gives £ $0 \cdot 643$ - ${ }^{1}$ Strategy: evidence of knowing to divide - ${ }^{2}$ Process: state rounded answer	- ${ }^{1} 157 \div 100 \cdot 96$ or $100 \cdot 96 \div 157$ \bullet^{2} £1 gives $\$ 1 \cdot 555$ or $\$ 1$ gives £0.643	2
Notes: 1. For • ${ }^{2}$ units are essential			
Commonly Observed Responses:			

Question			Generic Scheme	Illustrative Scheme	Max
6.	(a)	(i)	Ans: 81.1 - ${ }^{1}$ Process: calculate mean	$\begin{gathered} \cdot 1(81 \cdot 8+81 \cdot 7+81 \cdot 6+81 \cdot 0 \\ +80 \cdot 3+80 \cdot 2) \div 6=81 \cdot 1 \end{gathered}$	1
		(ii)	Ans: 0.72 - ${ }^{2}$ Process: calculate $(x-\bar{x})^{2}$ - ${ }^{3}$ Strategy: substitute into formula - ${ }^{4}$ Process: calculate standard deviation	$\begin{aligned} & \bullet 2.49,0 \cdot 36,0.25,0.01,0.64 \\ & 0.81 \\ & \bullet \sqrt{(2 \cdot 56 \div 5)} \\ & \bullet \cdot 0.72 \end{aligned}$	3

Notes:

1. Alternative method

$$
\bullet^{2} \sum x=486 \cdot 6 \text { and } \sum x^{2}=39465 \cdot 82
$$

2. Accept rounding or truncation to at least one decimal place for final answer
3. The mark ${ }^{4}$ can only be awarded when a two-step calculation has taken place.

Commonly Observed Responses:

Question	Generic Scheme	Illustrative Scheme	
(b)	Ans: two valid comments - ${ }^{1}$ Communication: comment regarding the mean - ${ }^{2}$ Communication: comment regarding standard deviation	- ${ }^{1}$ eg on average Goodhold give a faster lap time \bullet^{2} eg lap times with Goodhold are less consistent	2
Notes: $\begin{aligned} & 1 . \\ & 2 . \end{aligned}$	nts must refer to the context of e of an unacceptable comment results were more spread out with average the data for goodhold is	uestion. dhold (has not mentioned lap time) (does not refer to context)	
Commo	served Responses:		

Question	Generic Scheme	Illustrative Scheme	
(c)	Ans: 160 (km/hr) - ${ }^{1}$ Strategy: correct substitution into $S=D / T$ - ${ }^{2}$ Strategy: know how to change $\mathrm{km} / \mathrm{sec}$ to $\mathrm{km} / \mathrm{hr}$ - ${ }^{3}$ Process: find speed in km/hr	$\begin{aligned} & \cdot{ }^{1} S=3 \cdot 6 / 81 \\ & \cdot{ }^{2} \ldots \times 60 \times 60 \\ & \cdot{ }^{3} 160 \end{aligned}$	3
	Alternative Strategy - ${ }^{1}$ Strategy: knows how to find the time in hours - ${ }^{2}$ Strategy: consistent substitution into $\mathrm{S}=\mathrm{D} / \mathrm{T}$ - ${ }^{3}$ Process: find speed in km/hr	$\bullet^{1} 81 \div 60 \div 60$ $\bullet^{2} 3.6 \div \ldots$ $\bullet^{3} 160$	3

Notes

1. Candidates are expected to work to at least 3 significant figures throughout.
2. \bullet^{3} is only available for candidates who attempt to multiply or divide by 3600 (60×60)

Commonly Observed Responses:

1. $81 \div 60 \div 60=0 \cdot 0225 \div 3 \cdot 6=0.00625$
2. $81 \div 3 \cdot 6=22 \cdot 5 \longrightarrow 22 \cdot 5 \times 60 \times 60=81000$
3. $81 \div 3 \cdot 6=22 \cdot 5 \longrightarrow 22 \cdot 5 \div 60 \div 60=0.00625$
4. $3.6 \times 81=291 \cdot 6 \longrightarrow 291 \cdot 6 \times 60 \times 60=1049760$
5. $3.6 \times 81=291.6 \longrightarrow 291 \cdot 6 \div 60 \div 60=0.081$
6. $3 \cdot 6 \div 1 \cdot 35=2 \cdot 66 \ldots$
award 2/3 $\checkmark \times \checkmark$
award 2/3 $\times \checkmark \checkmark$
award 1/3 $\times \times \checkmark$
award 2/3 $\times \checkmark \checkmark$
award 1/3 $\times \times \checkmark$
award 1/3 $3 \times x$

Question		Generic Scheme	Illustrative Scheme	Max Mark
7.	(a)	Ans: (£)1100 - ${ }^{1}$ Process: calculate 5% of £15,000 - ${ }^{2}$ Communicate: find gross pay - ${ }^{3}$ Process :calculate 12% of $£ 1250$ - ${ }^{4}$ Communicate: find net pay	- ${ }^{1} £ 750$ $\bullet^{2} 750+500=£ 1250$ - ${ }^{3} 12 \%$ of $1250=£ 150$ - ${ }^{4} 1250-150=1100$	4

Notes:

1. For an answer of $£ 418$ (working must be shown) award $4 / 4$ if candidate states net pay is £1100.
2. For an answer of $£ 418$ (working must be shown) award $3 / 4$ if candidate does not state net pay is $£ 1100$.

Commonly Observed Responses:

1. For net pay $=750+440=1190$ award 3/ 4
Candidate has found 12% of basic pay only, instead of 12% of gross pay.
2. For net pay of $£ 1452$ (commission $=5 \%$ of $£ 23000$) award 3/ 4

Question		Generic Scheme	Illustrative Scheme	
(b)	(i)	Ans: (£) 418 - ${ }^{1}$ Process: net pay - monthly bills	- ${ }^{1} 1100-682=418$	1
	(ii)	Ans: 6.1 (\%) - ${ }^{2}$ Strategy: know how to find percentage increase - ${ }^{3}$ Process: calculate percentage increase	$\begin{aligned} & \bullet^{2} 15 \div 245 \times 100 \\ & \bullet^{3} 6 \cdot 1 \end{aligned}$	2

Notes:

1. ${ }^{-2}$ is available for calculations of the form $\mathrm{a} / \mathrm{b} \times 100$ where $\mathrm{a}, \mathrm{b}=15$ or 245 or 260 or 505 .
2. Both marks are available for a trial an improvement strategy leading to an answer between 5.9% and 6.3% inclusive. Working must be shown

Commonly Observed Responses:

(b)(i)

1. $£ 770$ (from net pay calculated as $£ 1452$)
award 1/1
(b) (ii)
2. $245 \div 260 \times 100=94 \cdot 2 \%$ leading to $100-94 \cdot 2=5 \cdot 8 \%$
award $1 / 2 \times \checkmark$
3. $260 \div 245 \times 100=106.1 \%$ award $1 / 2 \times \checkmark$
4. $15 \div 260 \times 100=5.8 \%$ award 1/2×

Question	Generic Scheme	Illustrative Scheme
(c)	Ans: Premier bank, 24 months - ${ }^{1}$ Process: find the new monthly surplus - ${ }^{2}$ Communicate: correct choice of Iender	- ${ }^{1} 403$ - ${ }^{2}$ Premier Bank, 24 months
Notes: If candidate calculates new monthly surplus that is less than $£ 150 \cdot 60 \cdot^{2}$ is available for "she can't afford any of the loans"		
Commonly Observed Responses: 1. New monthly surplus of $£ 755$ so choose Tasko bank over 12 months (from surplus of $£ 770$)		

Question		Generic Scheme	Illustrative Scheme	
(b)	(i)	Ans: (£) 418 - ${ }^{1}$ Process: net pay - monthly bills	- ${ }^{1} 1100-682=418$	1
	(ii)	Ans: 6.1 (\%) - ${ }^{2}$ Strategy: know how to find percentage increase - ${ }^{3}$ Process: calculate percentage increase	$\begin{aligned} & \bullet^{2} 15 \div 245 \times 100 \\ & \bullet^{3} 6 \cdot 1 \end{aligned}$	2

Notes:

1. ${ }^{-2}$ is available for calculations of the form $\mathrm{a} / \mathrm{b} \times 100$ where $\mathrm{a}, \mathrm{b}=15$ or 245 or 260 or 505 .
2. Both marks are available for a trial an improvement strategy leading to an answer between 5.9% and 6.3% inclusive. Working must be shown

Commonly Observed Responses:

(b)(i)

1. $£ 770$ (from net pay calculated as $£ 1452$)
award 1/1 \downarrow
(b) (ii)
2. $245 \div 260 \times 100=94 \cdot 2 \%$ leading to $100-94 \cdot 2=5 \cdot 8 \%$
award $1 / 2 \times \checkmark$
3. $260 \div 245 \times 100=106 \cdot 1 \%$ award $1 / 2 \times \checkmark$
4. $15 \div 260 \times 100=5.8 \%$ award 1/2×

| Question | Generic Scheme | Illustrative Scheme | |
| :--- | :--- | :--- | :--- | :---: |
| (c) | Ans: Premier bank, 24 months
 \bulletProcess: find the new monthly
 surplus
 $\bullet \bullet^{2}$ Communicate: correct choice
 of lender | \bullet^{2} Premier Bank, 24 months | $\mathbf{2}$ |

Notes:

If candidate calculates new monthly surplus that is less than $£ 150 \cdot 60 \cdot^{2}$ is available for "she can't afford any of the loans"

Commonly Observed Responses:

2. New monthly surplus of $£ 755$ so choose Tasko bank over 12 months (from surplus of $£ 770$)

Question	Generic Scheme	Illustrative Scheme	
(b)	Ans: (£)2.43 or $\mathbf{2 . 4 2}$ - ${ }^{1}$ Process: find cost of wax plus wicks - ${ }^{2}$ Process: add 65\% - 3 Process: find selling price of 1 candle	${ }^{1} 3 \times 13 \cdot 75+32 \times 0 \cdot 18=47 \cdot 01$ - ${ }^{2} 47.01 \times 1.65=77.57$ ${ }^{3} 77 \cdot 57 \div 32=2 \cdot 424 \ldots=2 \cdot 43$	3

Notes:

1. Accept 2.42 or 2.43
2. Any rounding or truncation within the calculations must be at least to two decimal places.

Commonly Observed Responses:

Question	Generic Scheme	Illustrative Scheme	Max Mark
(c)	Ans: no supported by working - ${ }^{1}$ Strategy: knows how to find compound volume - ${ }^{2}$ Strategy: substitute into cylinder formula - ${ }^{3}$ Process: find volume of cylinder - ${ }^{4}$ Strategy: substitute into cone formula - ${ }^{5}$ Process: find volume of cone - ${ }^{6}$ Process: find the number of candles that can be made - ${ }^{7}$ Communication: valid conclusion	- ${ }^{1}$ evidence - ${ }^{2} \mathrm{~V}=\pi \times 3.5 \times 3.5 \times 12$ - ${ }^{3} 461 \cdot 8$ (or $461 \cdot 58$) - ${ }^{4} \mathrm{~V} \pi=\frac{1}{3} \times 3.5 \times 3.5 \times 4$ - ${ }^{5} 51 \cdot 3$ - ${ }^{6} 461 \cdot 8+51 \cdot 3=513 \cdot 1$, $12000 \div 513 \cdot 1=23 \cdot 38$ - ${ }^{7}$ no he can't make 25 candles	7

Notes:

1. If candidate uses 7 for the radius at \bullet^{2} mark \bullet^{4} can be awarded for radius of 7 or 3.5
2. If candidate calculates that more than 25 candles can be made ${ }^{7}$ can be awarded for either yes he can make 25 or no he can't make (exactly) 25 .
3. \bullet^{6} is also available for $12000 \div 25=480$ or $513 \cdot 1 \times 25=12827 \cdot 5$

Commonly Observed Responses:

Where a radius of 7 is used leading to an answer of $5 \cdot 8 \ldots$ so no. award $6 / 7\left(\cdot^{2}\right.$ lost)

